000 | 02785nam a2200397 i 4500 | ||
---|---|---|---|
001 | OTLid0000463 | ||
003 | MnU | ||
005 | 20241120064014.0 | ||
006 | m o d s | ||
007 | cr | ||
008 | 180907s2009 mnu o 0 0 eng d | ||
040 |
_aMnU _beng _cMnU |
||
050 | 4 | _aQA1 | |
050 | 4 | _aQA37.3 | |
050 | 4 | _aQA299.6-433 | |
100 | 1 |
_aSloughter, Dan _eauthor |
|
245 | 0 | 2 |
_aA Primer of Real Analysis _cDan Sloughter |
264 | 2 |
_aMinneapolis, MN _bOpen Textbook Library |
|
264 | 1 |
_aGreenville, South Carolina _bDan Sloughter _c[2009] |
|
264 | 4 | _c©2009. | |
300 | _a1 online resource | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 0 | _aOpen textbook library. | |
505 | 0 | _a1 Fundamentals -- 1.1 Sets and relations -- 1.2 Functions -- 1.3 Rational numbers -- 1.4 Real Numbers -- 2 Sequences and Series -- 2.1 Sequences -- 2.2 Infinite series -- 3 Cardinality -- 3.1 Binary representations -- 3.2 Countable and uncountable sets -- 3.3 Power sets -- 4 Topology of the Real Line -- 4.1 Intervals -- 4.2 Open sets -- 4.3 Closed sets -- 4.4 Compact Sets -- 5 Limits and Continuity -- 5.1 Limits -- 5.2 Monotonic functions -- 5.3 Limits to infinity and infinite limits -- 5.4 Continuous Functions -- 6 Derivatives -- 6.1 Best linear approximations -- 6.2 Derivatives -- 6.3 Mean Value Theorem -- 6.4 Discontinuities of derivatives -- 6.5 l'Hˆopital's rule -- 6.6 Taylor's Theorem -- 7 Integrals -- 7.1 Upper and lower integrals -- 7.2 Integrals -- 7.3 Integrability conditions -- 7.4 Properties of integrals -- 7.5 The Fundamental Theorem of Calculus -- 7.6 Taylor's theorem revisited -- 7.7 An improper integral -- 8 More Functions -- 8.1 The arctangent function -- 8.2 The tangent function -- 8.3 The sine and cosine Functions -- 8.4 The logarithm function -- 8.5 The exponential function -- Index | |
520 | 0 | _aThis is a short introduction to the fundamentals of real analysis. Although the prerequisites are few, I have written the text assuming the reader has the level of mathematical maturity of one who has completed the standard sequence of calculus courses, has had some exposure to the ideas of mathematical proof (including induction), and has an acquaintance with such basic ideas as equivalence relations and the elementary algebraic properties of the integers. | |
542 | 1 | _fAttribution-NonCommercial-ShareAlike | |
546 | _aIn English. | ||
588 | 0 | _aDescription based on online resource | |
650 | 0 |
_aMathematics _vTextbooks |
|
650 | 0 |
_aApplied mathematics _vTextbooks |
|
650 | 0 |
_aAnalysis _vTextbooks |
|
710 | 2 |
_aOpen Textbook Library _edistributor |
|
856 | 4 | 0 |
_uhttps://open.umn.edu/opentextbooks/textbooks/463 _zAccess online version |
999 |
_c38706 _d38706 |