000 02785nam a2200397 i 4500
001 OTLid0000463
003 MnU
005 20241120064014.0
006 m o d s
007 cr
008 180907s2009 mnu o 0 0 eng d
040 _aMnU
_beng
_cMnU
050 4 _aQA1
050 4 _aQA37.3
050 4 _aQA299.6-433
100 1 _aSloughter, Dan
_eauthor
245 0 2 _aA Primer of Real Analysis
_cDan Sloughter
264 2 _aMinneapolis, MN
_bOpen Textbook Library
264 1 _aGreenville, South Carolina
_bDan Sloughter
_c[2009]
264 4 _c©2009.
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 0 _aOpen textbook library.
505 0 _a1 Fundamentals -- 1.1 Sets and relations -- 1.2 Functions -- 1.3 Rational numbers -- 1.4 Real Numbers -- 2 Sequences and Series -- 2.1 Sequences -- 2.2 Infinite series -- 3 Cardinality -- 3.1 Binary representations -- 3.2 Countable and uncountable sets -- 3.3 Power sets -- 4 Topology of the Real Line -- 4.1 Intervals -- 4.2 Open sets -- 4.3 Closed sets -- 4.4 Compact Sets -- 5 Limits and Continuity -- 5.1 Limits -- 5.2 Monotonic functions -- 5.3 Limits to infinity and infinite limits -- 5.4 Continuous Functions -- 6 Derivatives -- 6.1 Best linear approximations -- 6.2 Derivatives -- 6.3 Mean Value Theorem -- 6.4 Discontinuities of derivatives -- 6.5 l'Hˆopital's rule -- 6.6 Taylor's Theorem -- 7 Integrals -- 7.1 Upper and lower integrals -- 7.2 Integrals -- 7.3 Integrability conditions -- 7.4 Properties of integrals -- 7.5 The Fundamental Theorem of Calculus -- 7.6 Taylor's theorem revisited -- 7.7 An improper integral -- 8 More Functions -- 8.1 The arctangent function -- 8.2 The tangent function -- 8.3 The sine and cosine Functions -- 8.4 The logarithm function -- 8.5 The exponential function -- Index
520 0 _aThis is a short introduction to the fundamentals of real analysis. Although the prerequisites are few, I have written the text assuming the reader has the level of mathematical maturity of one who has completed the standard sequence of calculus courses, has had some exposure to the ideas of mathematical proof (including induction), and has an acquaintance with such basic ideas as equivalence relations and the elementary algebraic properties of the integers.
542 1 _fAttribution-NonCommercial-ShareAlike
546 _aIn English.
588 0 _aDescription based on online resource
650 0 _aMathematics
_vTextbooks
650 0 _aApplied mathematics
_vTextbooks
650 0 _aAnalysis
_vTextbooks
710 2 _aOpen Textbook Library
_edistributor
856 4 0 _uhttps://open.umn.edu/opentextbooks/textbooks/463
_zAccess online version
999 _c38706
_d38706